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Abstract. A procedure with areffectiveS-matrix is developed to apply the inverse scattering
transform method to a finite interval. Second harmonic generation and stimulated Raman scattering
are treated as two examples to demonstrate the applicability of this method.

1. Introduction

An important class of nonlinear integrable problems are those which have both an initial value
and also a boundary value. Of these, the simplest ones are those of hyperbolic form, such as
the sine—Gordon equation [1] and others of that structure [2]. For these equations, the initial
value—-boundary value problem is a well stated problem, and the existence and uniqueness
of the solution is well established. These equations are also integrable. Thus one can also
analyse these problems and study their solution by use of an inverse scattering transform (IST)
on a finite or semi-infinite interval. Such an IST requires the solution of a direct and inverse
scattering problem on the corresponding interval. This problem has several subtleties, which
we will discuss here.

Earlier works include [3—6] which have described various formal aspects of this problem.
Other papers [7—9] have treated this class of problems, with various special boundary values.
Rather artificial types of initial-boundary value problems were treated in [10].

As first pointed out in [11-14], and as later detailed in [15, 16], the evolution of the
scattering data along a boundary where there is boundary data, can differ strongly from what
we are familiar with on the infinite interval, where the scattering data evolves only according
to exp[i©2(¢)t]. Even solitons can be created at such a boundary. Of course, such solutions
can always be embedded in the infinite interval, and when this is done and looked at from that
point of view, one can then understand the nature of the finite interval solution: it is simply a
finite slice of the infinite interval and the more complex evolution of the scattering data is then
simply the consequence of taking the solution to be zero outside of the finite interval.

One of the key problems in the finite interval case, is determining the evolution of the
scattering data. Unfortunately, when one has a finite interval, one cannot resort to the argument
that one expects the solution to vanish at infinity. Instead one must know the solution at the other
end, in order to evaluate the evolution of the scattering data. However, this then overdetermines
the problem. The first solution to this problem was outlined in connection with the IST solution
of the stimulated Raman scattering (SRS) equations and the two-photon propagation (TPP)
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equations [11]. There, it was reasoned that for the IST in a finite interval, the respective

boundary values at the right-hand end of the considered interval had to be irrelevant, and in
fact, due to the nature of the characteristics, could be completely ignored. As an application,
one of these authors (DJK) then later used this technique to obtain the full and complete IST
solution for the low molecular excitation SRS equations [17]. He also demonstrated that the
asymptotic form of the solution would break up into a transient part and a Pailllgvart,

just as was typically seen in numerical simulations [18]. More recently, Fokas and Menyuk

[19] have treated the same problem from a Riemann—Hilbert point of view, where they have
compared the asymptotic form to the structures seen in the numerical solutions.

Here, we will develop the above ideas more rigorously and in more detail than has been
done previously. In particular, we want to look at some of the practicalities involved in using
this method for reconstructing solutions for finite (not asymptotical) times. For simplicity, this
shall be done only for the AKNS systems. Also we shall give several applications of these
results.

In section 2, the concept of theffectiveS-matrix is introduced and its equivalence—
with respect to the considered finite interval—to the Hinatrix is proven. In section 3, we
demonstrate by using a trivially solvable (‘C-integrable’) problem, that our procedure does
yield the correct results. A typical initial-boundary, or Goursat problem, for stimulated Raman
scattering (in the low excitation limit) is treated in section 4.

2. The effectiveS-matrix

Let us consider a general scattering problem of the AKNS type [20] and use the notation of
the quoted paper,

OV = (_i§ q.(x)>vEUv (1)

wherev means the column = (v1, v2)”. Now, however, we consider a finite interval
0 < x < xy and define the Jost functions to be those solutions to (1) fulfilling

1 -
px=0) = <0> lx =0) = <_°1> @
Ux = Xf) _ (g-)) ei{xf 1/_/(x — xf) — (é) e—i{x;.. (3)
The scattering coefficients, b, a, b, are then determined by
¢ (x) = ay(x) + by (x)
$(x) = by (x) — ay(x).

These definitions coincide exactly with those given in [20] foritifanite interval, providing
the potentialgy, » are extended to the full-axis by setting them equal to zero outside of the
finite interval O< x < x.

For any solutionp(x), to (1), it holds that

(4)

v(xs) = €794 Sy(0) (5)

wheresS is the scattering matrix

5= (g ;.f). (6)
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Now, the key feature of the AKNS scheme, is that for any integrable system that is solvable by
the AKNS IST, there will exist a common solution(x, ¢), of (1) and the evolution equations

8;v=<2 _BA)UEVU (7)

whereA, B, C are some rational functions ¢f In fact, for the hyperbolic systems of interest
here, it is well known that all these coefficients will vanish fipr — oo. This is a key feature
that we shall use later.

By differentiation of (5) with respect tg it follows that

S =—-SV,+EV,E"'S (8)
whereV; = V(0,1), Vy = V(xs,t) and

0 exp—icxy)

As is clear from (8), one must know (x, #) for x = 0 andx = xy, if one is to use this
relation, to determine the time evolution of the scattengfficients However, within the
inverse scattering procedure, we do not need the full set of scattering coeffiaighta, b.

Rather, we only need a subset of this information, and for no other purpose but to compute the
two functions

1 .
G = — / coeE ez <2y (10)
27
C
_ 1 .
G@):-—:/E@)é“dg z<2xy (11)
27

C
where theaeflection coefficients andc, are defined as
b
a

CcC = E:

Q| S

(12)

and the contou€ (C) of integration goes from-oo to +oo in the complex -plane passing
over (under) all zeros af (a).

Now, from the theory of characteristics, it follows that the solutiorifprs fully dependent
onV; and the initial data. Thus we first seek to find a way to factorithelependence out of
the S-matrix, leaving &, independent part.

This can be done as follows. Write tlSematrix as the product

S = 8;8°" 13)
with its factors being determined by

9,8 = _geffy. se0) = S(0) (14)

8S1=EV;E™'S; $1(0) = 1. (15)

Introduce a third matrixS,, which satisfies
0;So = Vs S, S>(0) =1 (16)
then it follows that

S1 = ESinl (17)
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is the solution of (15). We will show now that ttfematrix, S, can be replaced bg®f, or in
other words, the term containirigy in (8) does not affect the result.

Theorem. The effectives-matrix, S (1), defined by (8), gives rise to the same functighs,),
G(2), on the intervalD < z < 2x, as does the completematrix, S. Thus the Marchenko
equations in both cases lead to the same potentials within the physical inBesval < x /.

Proof. First, we will establish bounds on the asymptotic form of any scattering coefficients
(as functions ot), for any potential on a finite interval. As in [20], from (1)—(3), it is quite
straightforward to show, for in the upper-half compleg-plane, that

@) < 1+[coshQ) — 1]e 2 (18)
b(2)| < sinh(Q) e 2™/ (19)
wheren =Im¢ andQ = fo” max(|q(x)[, |r(x)|) dx. Next, we want to establish asymptotic

limits on the matrixS,. For this purpose, we define the components of this matrix in the
following way:

_(az —b;
s=(p ) (20)
and definec, and ¢, analogously to (12). According to our previous remarks, we take the
matrix elements o/, to decay, at least algebraicallyjnfor |£| — oco. We will assume that
Vi — O(1/¢) in this limit. It now follows from (16) that the solution fa8> will algebraically
approachl + O(1/¢) as|¢| — oo. Furthermore, it follows forz| sufficiently largec, will
not only be analytic, but also will vanish ag1)¢), for |¢| — oo in the upper-half complex
¢-plane.

Once we have these limits on the scattering coefficients ang)pthen we can proceed
and construchy,

as —EgeZi“f
Sl = 2i _ . (21)
boe 2%y az
Next, we take the matris®™, and define its coefficients by
eff . eff
¢« [a —b

5= (o e ) @2
Note that in (14), in the evolution of these coefficients, oift§f and b are coupled (and
also onlya®™ andb® are coupled). Thus along the contayrfor |¢| sufficiently large, the
evolution ofa®™ and® in ¢ will still obey the same above estimates foandb, if Q(x) is

replaced by its evolution in
Now definec®™ andce™ as in (12). Then from (10), (11) and (13), we obtain

Ceﬁ + (C—Zeﬁ/aeﬁ)CZeZi{xf
- 1— (beff/aeff)C2e2i{x/ :
Consider (23) for along the contou€, with |¢| large in the upper-half-plane. We have

(23)

_ c . 00 beff ) v

c=c+ [aeff + ceﬁbeﬁ]a%ez'“f Z[ﬁczez'“f] . (24)
v=0

Obviously, as long as & z < 2x,, the integrand-e™'¢% in (10) differs fromc®Te~'¢z only

by terms which are decaying exponentially in the upper-hgtlane and therefore do not

contribute to the integral in (10).
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In quite an analogous way, it follows that in (1A¥an be replaced by, and the proof
is complete. a

Note, however, thag®™ then cannot be interpreted aseattering matrixin the proper
sense. The coefficients & correspond to the scattering coefficients of some potential,
which is exactlyQ(x) on the interval O< x < x, but could be very different outside of this
interval.

FromS®f we findc®™, c°f (¢, ¢). Then we have to execute the integrals in (10) and (11) in
order to obtain the functions®f () andG®™(z). Note that due to the analyticity of(z, ¢)
andze(z, ¢) in the limit of || — oo, the resultings® (z) andGe (z) both vanish for < 0.
Once we have these functions, we then turn to the Marchenko-type equations, cf [20],

I:(x,y)+<é) G(x+y)—/x L(x,s)G(s+y)ds =0 x>y (25)
L(x,y)+(?_) (_;(x+y)+/x I:(x,s)é(s+y)ds=0 x>y (26)

where now we omit the superscript ‘eff’. Here and L are two-component columns,
L= (L1, Ly)", L= (L, Ly".
The system may simplify by typical symmetry reductions, following [20].

(a) Whenr = ¢q, wheree = +1, we find

c(¢) = —ec(=¢) G(z) = —€G(2) (27)

1:1 = —6L2 Zz = —Ll. (28)
(b) Whenr = eg* where the star denotes complex conjugation we find

c(¢) = —ec* (&) G(z) = —eG*(2) (29)

Ly =—€L} Ly=—Lj. (30)

Eventually, from the solution of (25) and (26), thetentialis found by

q(x) = 2L1(x, x) O <x <xp). (31)

3. Second harmonic generation

Let us now illustrate the above results with a simple example, which will demonstrate that this
does work. We will use the second harmonic generation (SHG) equations. When they are
reduced to pure amplitude modulation, we have (see, e.g., [21])

dyq1 = —2q92q1 3:q2 = g2 (32)

g1 andg; are slowly varying amplitudes of the fundamental and harmonic waves, respectively,
andy, t are characteristic coordinates in two-dimensional spacetime. The Goursat (or ‘initial—
boundary’) problem

g1(x,0) =1 O<x <uxr

(33)
q20,7) =0 O<t<1p
has the solution
1 T
q1 q2 (34)

:1+2xr =1+2x1:



6224 H Steudel ad D J Kaup

which can be easily checked by direct inspection. Now let us turn to the inverse scattering
technigue, and see whether we can rederive this solution directly.

The above system (32) fits into the scheme of section 2 upon taking the coordinajes
to be(x, 1) instead, and putting

_ (it 2q2
v= (242 i ) (35)
V= ;—qu M= <_11 _11>. (36)

Due to (33), the initialS-matrix is trivial.

S(t=0 =1 (37)
Meanwhile, ther-evolution of theeffectiveS-matrix is determined by

9,8 = — gy, 5°T0) = $(0) = 1. (38)

This is easily solved and the solution is given by

sy =1— I?TM. (39)
The effectivereflection coefficient then is found to be
Slz —it
N = —_-——— T 40
c(r,¢) Sy Trie (40)
where the superscript ‘eff’ has been omitted. Note tttads a pole at = ¢ = —it, whichis

in the lower-half¢-plane. Furthermore;is analytic ing everywhere else, including — oo.
To constructG andG, we take the Fourier transform, and find

o0
60 =5 [ coeidr=—ore (41)
27 J_o

whered (z) denotes the Heaviside step function. We recall théd), for z < 2x ¢, does not

depend on whether it is taken from the effective reflection coefficient or from the proper one.
Now we wish to solve the inverse scattering problem in the regien § < x;, and

for some arbitrarily fixed value aof. From the Marchenko-type equations, (25) and (26), we

obtain the closed system

X

Li(x, ) +G(x +y) — / Li(x,5)G(s+y)ds =0 (42)
X -
LaGx.y) + / La(x.$)G(s +y)ds = 0 (43)

which is valid fory > y. In our case, we have & ¢), and thus it holds that

G(z) = -G(2). (44)
The potential 2,, will be found from the solution of (42) and (43) by
q2(x) = Li(x. x)- (45)

It is easy to see that, sin€&(z) = 0 for z < 0, it follows thatg(x) = 0 for x < 0.
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Now, for x +y > 0, equations (42) and (43) reduce to

- X
Li(x,y)+ re’”f Li(x,s)e ™ ds = 7e 7™ (46)

-y
X _
Li(x,y) +te‘”’/ Li(x,s)e ™ ds=0. (47)

—y

Note that the integrands only requifg(x, y) andL1(x, y) for y < x. The solutions for

y > yx follow directly upon knowing the solutions in the regieriy < y < x. So, let us
restrict the above te-x < y < x, and then proceed to find the solutions in this region. Now
we have

y

Li(x,y) + 1:/ Li(x, —s) €V ds = re 7" (19)

—X
X -
Lt =+ [ LG @0 ds = (20)
y
Equivalently, these integral equations can be replaced by the ordinary differential equations
l_, ) l_l ’
ay( 10, ¥) )=MT< 10, ¥) ) (48)
Li(x, =) Li(x, =)
together with the conditions
Li(x,—x) =1 Li(x,—x) =0. (49)

Equation (48) has the solution

Li(x, y) ) (Zlu,—x))
=A+x+ytM . 50
(Ll(x,—y) R N 0
From
Li(x. x) ) (il(x,—x)>
=1+2xtM 51
<L1<x,—x> 2O\ Lo o &Y
and (49), we find that the solution for the potential is
g2=Li(x, x) = T+ 21 (52)
=2t
Li(x, x) = T+ 2,0 (53)

in accordance with (34). Note that the result does not contairiThis is due to the fact that
we started from trivial initial conditiong,(x, 0) = 0. Obviously, this result can be taken to
be the solution for the semi-line@ x < co as well.

This simple example has been used here to demonstrate the workability of the method.
From the physical point of view, the Goursat problem for SHG is of restricted interest only.
Instead a Cauchy problem has to be solved, which has been treated in some detail in [21], as
well with the restriction to pure amplitude modulation.
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4. Stimulated Raman scattering

Stimulated Raman scattering (SRS) (under the conditions of low excitation and neglect of
damping) is described by the equations

9,A1=—XAz d,A2 = X"Aq X = A1A5. (54)
Now we restrict to real amplitudes;, A,, X, and for convenience we assume
A2+ A5=1 (55)

where the latter condition could always be achieved by proper (nonlinear) time scaling. Then
clearly we could introduce an angléy, t) with

A1 =coqu/2) Ay = sin(u/2). (56)
Together with (54), this implieX = u, /2, and this leads to the sine-Gordon equation
Uyr = SiNu. (57)

Let us apply these results to the experiment dfitdret al [22]. In that experiment, it was
assumed (with very good indication of such), that the soliton pulses observed were generated
whenever there was a sign-flip in the Stokes field. So, let us consider such an initial-boundary
value problem.

Let us take
A1(0, t) = coSug/2) O<t<tpy=11+tT]
sin 2 0
A2(0, 1) = | S"0/? sren (58)
—S|n(u0/2) 1 <T<Ty
X(x,0=0 O<x <xy

with 0 < ug = constant< /2. The physical interpretation of these boundary—initial value
conditions is the following. From the boundary values, we see that at the front of the nonlinear
medium, aty = 0, the amplitude for the Raman field;, is a simple square pulse, of length
7y = 11 + 12. The amplitude of the Stokes fieldy, is similar and of the same length, except
that there is a sign flip at = ;. The initial value condition, at = 0, correspond to the
medium being initially unexcited.

We shall now solve this problem in the context of the sine—Gordon equation (57). This
equation is the integrability condition [23] for the linear system

_ _ —ic uy/2
WY =Uy = (_MX/Z ic )1// (59)
Ry r=ija (60)
W=Ve= ( sinu COSu)w =1/(40).

Now we wish to apply the inverse scattering method to the region ® < t; + > and
0 < x < xs. The direct scattering problem (59) for= 0 and O< x < x is actually trivial
and leads to

S(t=0) =1. (61)

Note that the initial scattering data are therefore trivial, and in fact, no solitons or radiation can
be initially present. However, as we shall see, thevolution will generate the radiation and

the solitons. The radiation and soliton(s) will appear to be ‘injected’ into the physical region
from the boundary ag = 0.
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The t-evolution of theeffectiveS-matrix is governed by

M, O<t<m
0:5=—-SV(0, 1) = —AS x (62)
M, T <T <7y
COSi —sin COSi sin
Ml = < 3 1o MO) M2 = < . 1o "o ) (63)
—Sinug — COoSug Sinug — COSug
M2 =M2=1 (64)

The solution of (62) at = 7, is easily found as
S(ts) = (Lcoshirty) — Mysinh(ity))(1coshAtz) — My sinh(ito)) (65)
and with the notation corresponding to (6), we find éffectivereflection coefficient as

o — o —2C

¢ =sinuo((xl_c)(a2_ O _1+C (66)
where we have used the abbreviations

a; = coth(it)) C = cosuo. (67)
Therefore, considered as a function af(or of ¢), has poles where

(coth(Aty) — C)(coth(Aty) — C) =1 — C2. (68)

Let us detail the solution of this equation. First, note that the equation is symmetiic in

andr,. Fix the values of; andt,, and consider the left-hand side of (68) as a functioh,of
for A real. Asa varies from 0 tooo, the left-hand side decreases monotonically frsirto

(1 — C)?, which is less than the right-hand side, of value €2. Thus there is exactly one
solution,. = 1o > 0. Consider now the dependenceigfon r; andr,. One can easily show
thatig(t1, T2) is @ monotonically increasing function of each variable. Consiger 0, but

fixed, andr, — oo. Now Aq is seen to reach a finite limit. If we look at what this implies for
Lo = 1/(4)g), we see thaty will move from zero, up along the positive imaginary axis, and

will approach some finite value.
Now let us discuss this pole condition, equation (68), in various limits.

(a) The conditionr, — 0 corresponds to no sign-flip in the amplitudeAf. When this is
true, the pole condition becomes

coth(rty) = C (69)
or
e = _gh do =log[(1+C)/(1—C)] > 0. (70)

There is an infinity of poles along a straight line,

1
Ak = =—(do £ (2k — 1)im) k=12 .... (71)
2‘1,'1

This means that when transformed to thelane, these poles will be along a circle that

just touches the regl-axis at the origin, and cuts the imaginary axis at
i‘[]_

= 7 (72)

A

Furthermore; = Owill be a cluster point. This situation, with no phase jump, corresponds

exactly to the superfluorescence problem weitinstant initial tipping anglecf [8]. Note
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that the diameter of the circle is growing proportionatio The poles are symmetrically
placed about the imaginary axis, and there is no pole exactly on the imaghaaayg. All
of these poles are in the upper-hatplane. They appear in pairs,, = —¢;*, and each
such pair corresponds to a breather. These results are in agreement with [24] as well as
with [9].

(b) Whent, is some multiple of1, i.e.to =n1y > 0,n =1,2,3,..., itis easy to find all
solutionsy, from the real solutiong = d,,/21;. The positive numberg, introduced here
are functions ofC andn only and are monotonically decreasing with increasing, in
particular, is determined as the real solution of

coth(d1/2) = C ++/1— C?

d1=log[1+%<1+ lllig)] (73)

For generak, all solutions are found in the form

that is

1 .
A = Z_(d" + 2kimr) k=0,+1,42,.... (74)
T1

The poles in the -plane are again located on the corresponding circle.

(c) The problem simplifies for large,, corresponding to case (b) amd > 1. When
72 Re(A) > 1 then (68) becomes

coth(ht) =1+2C
or
e?n = g ds = log(1+1/C) (75)

which has the solution
1 .
M = — (doo + 2kim) k=0,+£1£2, .... (76)
2‘[1

For the physical cases of interest, we would normally héyex A; at x = 0. Then
we would haveC =~ 1, d,, >~ log 2 = 0.693. Consider now the polegs = i/(4r). We

see that there will be one on the imaginary agis= it1/2d.,, and this one will be well
separated from all others.

For solving the inverse scattering problem, the residug oOf at the poleg; is required.
This leads to a rather involved expression in general, but simplifies for the particular cases
considered above,

2 (@)
Rest) =~ = gy f 1 o=t &
8¢ sinug —2 exp(—2t2A4) ©

cosug(l — cosug)

It is useful to have in mind some elementary properties of solitons and breathers of the sine—
Gordon equation, over the ful{-axis, when one considers these solutions applied to our
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SRS system. A single pole at= ing corresponds to a soliton with its spatial width being
Ay = 1/2n9 and its location in space being

Xo = 15 109(2110/ |0l (78)
The temporal width of the soliton i&t = 2.

For a breather, corresponding to the pair of padess & +in and¢_; = —&; +ing, with
c_x = —c}, one obtains a spatial widthy = 1/2n;, and atemporal widtht = 2(§2+n?2) /ny.
The location in space is given by the same formula (78), but with subscripts 0 replaged by
The maximum amplitudes are found as

25k
g2+

Now let us return to the finite interval @ x < x; or, maybe, to the half-line & x. Forug
sufficiently small, in cases (a) and (b), we find the breathers wittt lowated in the unphysical
region,x < 0. Thus these breathers would never be observed, except for their tails, at best.
On the other hand, for large they become very broad in space and very low in amplitude.
Thus these would only contribute some long-wavelength structure to the background. So there
is almost no chance that any approximation, with a finite number of poles, could lead to an
adequate description. Instead, in these cases, one should look for some other approximation.
Indeed, the corresponding superfluorescence problem equivalent to our case (a) was solved by
the saddle-point method [8].

For case (c), the situation is completely different. Here we have a single soliton, which is
well separated from a series of breathers. Proceeding, we obtain

| X Imax = 41 |A1lmax = (79)

2ic?

co= —d2’;3 e/ (80)
oo”0

lco/c1] = 1+ (27 /ds)? ~ 58. (81)

Thus forz, sufficiently large we obtaiyg > 0 as the location of the single soliton and this is
well separated from the nearest breather. And we find maximum values

| X5 max =~ 5.871 |AS max =~ 1 (82)
for the soliton and
| X P max >~ 1.431; | AP hax =~ 0.22 (83)

for the first breather.

It might be illustrative to look at an example where we have a region of a pure Stokes
pulse, following after the laser pulse. Let us take- 1o > t1. Then the evolution of the
effectivereflection coefficient is simply

c(t) = c(rg) €2, (84)

In this region, the motion of the poles has ceased. This is a stable arrangement: no laser pulse
and only pure Stokes. We note that due to the exponential factor, the single soliton—when
there is a pole on the imaginary axis—and the breathers, will always reach the physical region,
x > 0, for some sufficiently large. And because of their differing velocities, the soliton and

the individual breathers become more and more well separatednaseases.
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5. Summary and conclusion

We developed the IST method for solving a Goursat problem with a finiteerval. The
essential restriction to be made is that the linear equation governing the temporal evolution
of scattering data, equation (7), must contain only negative powers of the spectral parameter.
That is, the method is applicable to the sine—~Gordon equation, self-induced transparency
(SIT), stimulated Raman scattering and many other similar problems, but not, however, to
Korteweg—de Vries and nonlinear Sédinger equations, and other equations that do not have
characteristics. The recipe following from our analysis is extremely simple: establish the
equation for the temporal development of hienatrix in the finite interval and simply omit

the terms containing the data from the right-hand border. éffestiveS-matrix resulting in

this way fully describes the physics in the physical region.

By means of two examples—SHG and SRS—we demonstrated that this method does work
for AKNS problems withr = ¢* as well as for those with = —g* reductions. As a somewhat
more involved problem, the propagation of an optical pulse in a two-photon absorber will be
treated elsewhere by the same method [25].

Finally, we wish to add some remarks concerning SRS solitons. Our present study in
section 4 shows how solitons will evolve in the absence of perturbations. However, this cannot
yield a realistic description of the experiment byildtet al[22], simply because damping has
been completely neglected. In the actual experiment, the damping times were of the order of
the soliton width. However, it has been known for a long time, that a perturbative analysis of
this IST [26] has given rather good agreement with the experiment.

On the other hand, one can find in the literature the statement by Céauzd§27] that
‘...the spike of pump radiation’ found in the experiment [22] ‘is not a soliton, but merely
a special manifestation of tteontinuous spectrum.’. This conclusion has been based on
some ‘general theorem’, according to which, no discrete spectrum can appear when initially
there is none. This is certainly true for the full-line problem. However, as illustrated herein, it
is clearly false for a finite or semi-infinite interval problem.

Ourintention in this present treatment of SRS is simply to allow others to better understand
the nature of SRS transient solitons. Principally, the effecfiwveatrix formalism presented
here is not necessary for understanding their nature, but it is helpful. In [28], the mathematical
equivalence of SRS and sharp-line SIT solitons was pointed out in some detail, and, in
particular, it was there discussed how solitons can enter or leave axitegion. Lastly,
we make the following simple observation: at some level of idealization, the SRS solitons
observed by DOihl et al will be described by the sine—Gordon equation. It is well known that
the sine—Gordon equation does not have ‘spikes’, it has solitons.
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